Negative differential resistance and bias-modulated metal-to-insulator transition in zigzag C2N-h2D nanoribbon
نویسندگان
چکیده
Motivated by the fabrication of layered two-dimensional material C2N-h2D [Nat. Commun. 6, 6486 (2015)], we cut the single-layer C2N-h2D into a zigzag nanoribbon and perform a theoretical study. The results indicate that the band structure changes from semiconducting to metallic and a negative differential resistance effect occurs in the I-V curve. Interestingly, the current can be reduced to zero and this insulator-like state can be maintained as the bias increases. We find this unique property is originated from a peculiar band morphology, with only two subbands appearing around the Fermi level while others being far away. Furthermore the width and symmetry of the zigzag C2N-h2D nanoribbon can be used to tune the transport properties, such as cut-off bias and the maximum current. We also explore the electron transport property of an aperiodic model composed of two nanoribbons with different widths and obtain the same conclusion. This mechanism can be extended to other systems, e.g., hybrid BCN nanoribbons. Our discoveries suggest that the zigzag C2N-h2D nanoribbon has great potential in nanoelectronics applications.
منابع مشابه
Electronic structures and transport properties of fluorinated boron nitride nanoribbons.
By applying the nonequilibrium Green's functions and the density-functional theory, we investigate the electronic structures and transport properties of fluorinated zigzag-edged boron nitride nanoribbons. The results show that the transition between half-metal and semiconductor in zigzag-edged boron nitride nanoribbons can be realized by fluorination at different sites or by the change of the f...
متن کاملElectronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT
Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...
متن کاملElastic Properties and Fracture Analysis of Perfect and Boron-doped C2N-h2D Using Molecular Dynamics Simulation
This paper explores the mechanical properties and fracture analysis of C2N-h2D single-layer sheets using classical molecular dynamics (MD) simulations. Simulations are carried out based on the Tersoff potential energy function within Nose-Hoover thermostat algorithm at the constant room temperature in a canonical ensemble. The influences of boron (B) doping on the mechanical properties, ...
متن کاملI-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices
Motivated by the very recent fabrication of sub-10-nm-wide semiconducting graphene nanoribbons X. Li et al., Science 319, 1229 2008 , where some of their band gaps extracted from transport measurements were closely fitted to density-functional theory predictions for magnetic ordering along zigzag edges that is responsible for the insulating ground state, we compute current-voltage I-V character...
متن کاملSpin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton
Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017